Online adaptive radial basis function networks for robust object tracking
نویسندگان
چکیده
Visual tracking has been a challenging problem in computer vision over the decades. The applications of visual tracking are far-reaching, ranging from surveillance and monitoring to smart rooms. In this paper, we present a novel online adaptive object tracker based on fast learning radial basis function (RBF) networks. Pixel based color features are used for developing the target/object model. Here, two separate RBF networks are used, one of which is trained to maximize the classification accuracy of object pixels, while the other is trained for non-object pixels. The target is modeled using the posterior probability of object and non-object classes. Object localization is achieved by iteratively seeking the mode of the posterior probability of the pixels in each of the subsequent frames. An adaptive learning procedure is presented to update the object model in order to tackle object appearance and illumination changes. The superior performance of the proposed tracker is illustrated with many complex video sequences, as compared against the popular color-based mean-shift tracker. The proposed tracker is suitable for real-time object tracking due to its low computational complexity. 2009 Elsevier Inc. All rights reserved.
منابع مشابه
Adaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملSaturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study
In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...
متن کاملAdaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملHybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term
This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...
متن کاملAdaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Vision and Image Understanding
دوره 114 شماره
صفحات -
تاریخ انتشار 2010